GCM - Ice Sheet Coupling: Generating Hi-Res Suface Mass Balance Fields with a GCM.

Bob Fischer, Max Kelley, Sophie Nowicki, Gavin Schmidt

October 3, 2012

What?

Two-way coupling of ModelE and a dynamic ice sheet model

- Drive ice sheet surface mass balance with GCM.
- Feed ice extent changes back into ice sheet model.

Outline

- 1. Introduction and Overview
- 2. Height Classes
 - Downscaling (Extrapolation)
 - Examples and Evaluation
- 3. Snowdrift (QP) Smoothing
- 4. Conclusions and Future Work

Why Couple GCMs and Ice Models?

Ice is melting at alarming rates. Address issues like:

- Melting of Greenland
- Sensitivity to climate change of West Antarctic Ice Sheet
- Ice sheet albedo feedback
- Ice sheet inception
- Paleo-climate studies of glaciations
- ...[your ice problem here]...

[Photos by Gary Braasch]

ICE-GCM Feedbacks

Atmosphere Feedbacks:

- Albedo feedback: Warmer temperatures result in increased melting, a darker surface, and additional warming.
- Ice geometry feedbacks: As an ice sheet shrinks, its surface warms (temperature-elevation feedback), and regional circulation can change (e.g., Ridley et al. 2005).

Ocean Feedbacks:

- Sub-shelf growth and melting rates depend on time- varying interactions among various water masses, including glacier meltwater.
- Sub-shelf circulations are likely to change as ice shelves advance and retreat over complex topography.

[Slide from William Lipscomb]

One-Way vs. Two-Way Coupling

One-Way Coupling: Drive ice sheet surface mass balance with GCM.

- Model and forecast ice sheet SMB.
- Neglects feedbacks.
- Good up to decadal timescales.
- CESM 1.0, RACMO2

Two-Way Coupling: Also feed ice extent changes back into ice sheet model.

- Model long-term changes in ice sheet.
- Constants must vary: ice extent, ice sheet thickness, land surface type, bedrock topography (?).
- Capture climate feedbacks.
- Good for hundreds or thousands of years.

Studies of long-term evolution of ice sheet require two-way coupling.

Our GCM and Ice Model

GCM: GISS ModelE

Ice Model: CISM provides common interface to multiple dynamical cores:

- Glimmer
 - Shallow Ice Approximation
- SeaCISM (K. Evans, A. Salinger, S. Price, P. Worley, et al)
 - 3-D higher-order velocity solver
- **BISICLES** (D. Martin, S. Cornford, et al)
 - 2-D higher-order velocity solver
 - Adaptive Mesh Refinement

Other Ice Models: ISSM, PISM, etc.

Content of this talk applies to all ice models

[Slide adapted from William Lipscomb]

A Dynamic Ice Model

Example from ISSM (Bamber)

Challenges

Model Mismatch

- ModelE: Lo-Res, Short Timestep, Round Earth
- Ice Models: Hi-Res, Long
 Timestep, Flat Earth
- 2. Precipitation critical to correct surface mass balance (SMB).
- 3. Ice model needs hi-res SMB
- 4. Narrow outlet glaciers (1-km resolution needed).
- 5. Unknown basal properties.
- 6. Ice Shelves

GCM View of World

Ice Model View of World

Height (Elevation) Classes

- Medium-res grid inbetween GCM (coarse) and ice (fine).
- GCM grid cells sub-divided based on elevation.
- GCM keeps state on a per-height-class basis (like n more land surface types).

Downscaling with Height Classes

Atmosphere values extrapolated ("downscaled") to height-classified grid based on elevation.

• Pressure:

$$P = P_0 e^{-(z - z_0)/H}$$

 \dots where H is scale height of atmosphere

Temperature:

$$T = T_0 - \alpha(z - z_0)$$

... where α is an adiabatic lapse rate ($\approx 4 - 8K/\text{km}$)

- Precipitation: None for now.
 - Probably needed in future.
 - Downscaling schemes exist, not so much in GCM context.

Question: Are these extrapolations "reasonable?"

Temperature Downscaling: What Lapse Rate?

Question: What lapse rate to use in T downscaling?

(Constant over space and time).

Answer: Try a bunch, pick the one that generates smoothest T fields.

Question: Maybe we could be more sophisticated in T downscaling?

GCM – Ice Sheet Coupling

SMB Components

What goes into Surface Mass Balance (SMB) Computation?

Height Classes: Questions

- Are height classes necessary to generate realistic SMB fields from GCM?
- How well can we represent real SMB fields?
- How good are the SMB fields we can generate?

Height Classes: Necessary?

Question: Are height classes necessary to generate realistic SMB fields from GCM?

Answer: YES! Without height classes:

Margins of ice sheet — the action! — cannot be resolved.

Height Classes: Representation

Question: How well can we represent real SMB fields? **Answer:** Let's try representing RACMO2 precipitation with height-classified grid.

GCM Output: July Surface Temperature

GCM Output: January Surface Temperature

GCM Output: July Runoff

GCM Output: January Runoff

GCM Output: 5-year Mean SMB

But is it Smooth?

Ice models want smooth (5km) SMB input.

Must maintain conservation of mass and energy when smoothing.

Bilinear Interpolation:

Not easily conservative.

Snowdrift (QP) Regridding:

- New smoothing algorithm that maintains conservation.
- Finds smoothest field that satisfies conservation requirement.
- Fundamentally different from other smoothing schemes.

Regridding Basics

Overlap Matrix

Related to Exchange Grid (ESMF)

Sample Grid Pair

Sample Overlap Matrix L_{ij}

	1	2	3	4	5	6	7	8	9
1	1	0.5		0.5	0.25				
2		0.5	1		0.25	0.5			
3				0.5	0.25		1	0.5	
4					0.25	0.5		0.5	1

$$G = GCM grid, G_{i=1...m} = polygons$$

 $H = ice grid, H_{j=1...n} = polygons$
 $L_{ij} = Overlap Matrix = |G_i \cap H_j|$

- Overlap Matrix is sparse
- General Polygon Algos used to compute L_{ij}
- Works for all grid geometries (ice & GCM)

Simple Conservative Regridding

Multiply by Overlap Matrix

Upgridding (Ice → GCM)

$$Z_{G_i} = \frac{L_{ij} Z_{H_j}}{\sum_j L_{ij}}$$

Downgridding (GCM → Ice)

$$Z_{H_j} = \frac{Z_{G_i} L_{ij}}{\sum_i L_{ij}}$$

Most regridders = Matrix Multiply (for some matrix)

QP Regridding (Snowdrift)

Downscaling is choppy, Ice model needs smooth input.

Problem Requirements:

- Smooth Field Required
 - \Rightarrow minimize $|\nabla Z|^2$ over the ice sheet
- Conservation Required.

$$\Rightarrow \int_{C_i} ZdA$$
 conserved through regridding

(for conservation regions C_i)

QP Regridding (Snowdrift)

Phrase as Quadratic Program:

Minimize (with respect to \mathbf{x}): $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} + \mathbf{c}^T \mathbf{x}$ Subject to constraints of the form: $A\mathbf{x} \leq \mathbf{b} \text{ (inequality constraint)}$ $E\mathbf{x} = \mathbf{d} \text{ (equality constraint)}$

Solve the Quadratic Program

- Conjugate Gradient Solver for Equality Constraints
- GALAHD Optimization Package

QP Regridding (Snowdrift)

Conservation Regions

"Conservation" is underdefined. Is regridding:

- Conservative over entire ice sheet? $C_1 = \{\text{Entire Ice Sheet}\}$
- Conservative over each GCM cell? $C_i = G_i$

Larger conservation regions \Rightarrow more smoothing.

Indications for More Smoothing

- Smaller GCM cells
- Unrealistically choppy downscaling artifacts.

Smoothing is an art!

...but now we're getting away from the Physics :(

Conservation Correction

- Geometry Mismatch:
 GCM = Round Earth
 Ice Model = Flat Earth
- Projection used.
- Q: What happens when grid cells change area through projection?

Moral of Story: Use an equal-area projection

- Lambert Equal Area
 Azimuthal: Good!
- Stereographic: Bad!

Don't Try This at Home

(Constant field regridded through Stereographic Projection)

Smoothing Example

[Courtesy of CESM (Bill Lipscomb et al)]

Conclusions

- Height classes are critical to producing realistic SMB fields from low-res GCMs.
- Orographic precipitation downscaling will also be needed, especially in non-melting regimes.
- Snowdrift regridding may be an effective way to produce smooth ice model inputs.
- Use equal-area projections in Ice Model GCM Coupling work.

Future Work

- Try out one-way coupling, just for fun!
- Optimal Height Classes?
 - Current fixed height classes adapted from Lipscomb et al.
 - Can we do better?
- Snow/Firn model on top of dynamic ice model, 15m deep.
 - Ice models want constant T on top.
 - Required to keep conservative energy budget.
 - Should be same as snow model over bare land surface types.
- Precipitation Downscaling (Smith, Barstad, et al)
 - Necessary for hi-res SMB in non-melting regime.
- Dynamic Ice Extents
 - Upgrade ModelE for dynamic land surface types and orography.
 - Regrid height-classified variables as ice sheet changes.

Big Challenges

Ice Shelves

Area of active basic modeling research.

Basal Features

- Basal topography, hydrology and roughness critical to behavior of ice sheet.
- Parameters hard to know with much certainty.
- Most outlet glaciers remain unmeasured.

Orographic Precipitation Downscaling

- ...in the context of a GCM
- How to move precipitation between GCM grid cells?